On minimal outerplanar graphs of given diameter

نویسنده

  • Ladislav Stacho
چکیده

define minimal \;01un:lal:ne'IlLS, In contrast with [8),

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimal Cycle Bases of Outerplanar Graphs

2-connected outerplanar graphs have a unique minimal cycle basis with length 2|E| − |V |. They are the only Hamiltonian graphs with a cycle basis of this length.

متن کامل

A Note on the Structure of Locally Outerplanar Graphs

A convex geometric graph is called locally outerplanar if there is no path of length three intersects itself. In [D. Boutin, Convex Geometric Graphs with No Short Self-intersecting Path, Congressus Numerantium 160 (2003) 205–214.] and [D. Boutin, Structure and Properties of Locally Outerplanar Graphs, Journal of Combinatorial Mathematics and Combinatorial Computing 60 (2007) 169–180.], Boutin s...

متن کامل

Augmenting Outerplanar Graphs to Meet Diameter Requirements

Given a graph G = (V, E) and an integer D ≥ 1, we consider the problem of augmenting G by a minimum set of new edges so that the diameter becomes at most D. It is known that no constant factor approximation algorithms to this problem with an arbitrary graph G can be obtained unless P = NP , while the problem with only a few graph classes such as forests is approximable within a constant factor....

متن کامل

Outerplanar Crossing Numbers of 3-Row Meshes, Halin Graphs and Complete p-Partite Graphs

An outerplanar (also called circular, convex, one-page) drawing of an n-vertex graph G is a drawing in which the vertices are placed on a circle and each edge is drawn using one straight-line segment. We derive exact results for the minimal number of crossings in any outerplanar drawings of the following classes of graphs: 3-row meshes, Halin graphs and complete p−partite graphs with equal size...

متن کامل

Rainbow connections for outerplanar graphs with diameter 2 and 3

An edge-colored graph G is rainbow connected if every two vertices are connected by a path whose edges have distinct colors. The rainbow connection number of a connected graph G, denoted by rcðGÞ, is the smallest number of colors that are needed in order to make G rainbow connected. It was proved that computing rcðGÞ is an NP-hard problem, as well as that even deciding whether a graph has rcðGÞ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 12  شماره 

صفحات  -

تاریخ انتشار 1995